Why quaternion algebras have rank 4

نویسنده

  • Darij Grinberg
چکیده

1. The statement This brief note is devoted to a simple (and well-known) result in noncommutative algebra, which is not deep but nevertheless subtler than it appears. It concerns the so-called quaternion algebras: Definition 1.1. Let k be a commutative ring1. Let a ∈ k and b ∈ k. The quaternion algebra Ha,b is defined to be the k-algebra with generators i and j and relations i2 = a, j2 = b, ij = −ji. (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why quaternion algebras have rank 4 Darij Grinberg

1. The statement This brief note is devoted to a simple (and well-known) result in noncommutative algebra, which is not deep but nevertheless subtler than it appears. It concerns the so-called quaternion algebras: Definition 1.1. Let k be a commutative ring1. Let a ∈ k and b ∈ k. The quaternion algebra Ha,b is defined to be the k-algebra with generators i and j and relations i2 = a, j2 = b, ij ...

متن کامل

Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms

We discuss the relationship between quaternion algebras and quadratic forms with a focus on computational aspects. Our basic motivating problem is to determine if a given algebra of rank 4 over a commutative ring R embeds in the 2 × 2-matrix ring M2(R) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras amo...

متن کامل

Rings of Low Rank with a Standard Involution and Quaternion Rings

We consider the problem of classifying (possibly noncommutative) R-algebras of low rank over an arbitrary base ring R. We first classify algebras by their degree, and we relate the class of algebras of degree 2 to algebras with a standard involution. We then investigate a class of exceptional rings of degree 2 which occur in every rank n ≥ 1 and show that they essentially characterize all algeb...

متن کامل

Characterizing Quaternion Rings

We consider the problem of classifying noncommutative R-algebras of low rank over an arbitrary base ring R. We unify and generalize the many definitions of quaternion ring, and give several necessary and sufficient conditions which characterize them. Let R be a commutative, connected Noetherian ring (with 1). Let B be an algebra over R, an associative ring with 1 equipped with an embedding R →֒ ...

متن کامل

Characterizing Quaternion Rings over an Arbitrary Base

We consider the class of algebras of rank 4 equipped with a standard involution over an arbitrary base ring. In particular, we characterize quaternion rings, those algebras defined by the construction of the even Clifford algebra. A quaternion algebra is a central simple algebra of dimension 4 over a field F . Generalizations of the notion of quaternion algebra to other commutative base rings R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016